Ethanol and Isopropyl Alcohol Exposure Increases Biofilm Formation in Staphylococcus aureus and Staphylococcus epidermidis
نویسندگان
چکیده
INTRODUCTION Alcohols, including ethanol and isopropyl alcohol, are used in clinical practice for disinfection and infection prevention. Recent studies, however, demonstrate that alcohols may enhance biofilm production in Staphylococci. METHODS We quantified biofilm formation in the presence of ethanol and isopropyl alcohol in six different, well-characterized strains of Staphylococcus epidermidis and Staphylococcus aureus. After 24 h of biofilm development, each strain was exposed to normal saline (NS), ethanol, or isopropyl alcohol (40%, 60%, 80% and 95%) for additional 24 h incubation. Adherent biofilms were stained and optical density was determined. Viability of strains was also determined after alcohol exposure. RESULTS Ethanol increased biofilm formation in all six strains compared to normal saline (p < 0.05). There was increased biofilm formation with increasing ethanol concentration. Isopropyl alcohol also increased biofilm formation with increasing alcohol concentration in all six strains (p < 0.01 vs NS). The slime-negative, chemical mutant strain of S. epidermidis increased biofilm formation after exposure to both alcohols, likely reverting back its primary phenotype through modulation of the intercellular adhesin repressor. All strains demonstrated viability after exposure to each alcohol concentration, though viability was decreased. CONCLUSION Ethanol and isopropyl alcohol exposure increases biofilm formation of S. aureus and S. epidermidis at concentrations used in clinical settings. Ethanol and isopropyl alcohol did not eradicate viable Staphylococci from formed biofilm.
منابع مشابه
Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis.
The pathogenesis of Staphylococcus epidermidis is correlated with biofilm formation. We investigated the effect of three common alcoholic skin disinfectants, ethanol, n-propanol and isopropanol, on the biofilm formation of 37 clinical, icaADBC-positive S. epidermidis isolates. In alcohol-supplemented media 18 strains displayed increased biofilm expression. Sixteen of 19 strains were generally i...
متن کاملThe Effect of Biosurfactant of Saccharomyces Cerevisiae on Biofilms Produced by Staphylococcus Aureus, Epidermidis and Saprophyticus: A Laboratory Study
Background and Objectives: Biosurfactants are amphiphilic molecules produced by microorganisms that due to surfactant activity, have several applications in different industries such as cleaning, emulsification, foaming and dispersion. The aim of this study was to investigate the effect of biosurfactant extracted from saccharomycess cerevisiae on biofilm formation of staphylococcus aureus (PTC...
متن کاملBiofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus
Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...
متن کاملDetection of Intracellular Adhesion (ica) and Biofilm Formation Genes in Staphylococcus aureus Isolates from Clinical Samples
Background: The nosocomial infections that cause the establishment of biofilms on the embedded biomedical surfaces are the leading cause of sepsis and are often related to colonization of implants by Staphylococcus epidermidis. Materials and Methods: A total of 40 clinical S. aureus isolates were collected from Zabol, Iran. The ability of these strains to form biofilm was determined by microli...
متن کاملInvestigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms
Background: Biosurfactants are compounds that are produced by different microorganisms and have an emulsifying property. This study aimed to investigate extractive biosurfactant from bacillus subtilis (PTCC1720) against the biofilms of Staphylococcus aureus (PTCC 1112), Staphylococcus saprophyticus (PTCC 1440) and Staphylococcus epidermidis (PTCC 1435). Materials and Methods: This study was con...
متن کامل